

Agricultural Land Management and Evaluation Division

National Mapping, Characterization and Development of Spatial Database for the Coastal Areas Affected by Salinity

TABLE OF CONTENTS

	RATIONALE	1
I	Soil Physical Characteristics	2
A	General Description of the Site	2
В	Land Management Unit (LMU)	3
С	Elevation	3
D	Agro-Climate	3
Е	Land Use	4
II	Soil Chemical Characteristics	5
A	Salinity Classification	6
В	Suitability Assessment	7
С	Rice Yield by Degree of Salinity	7
III	Soil Physico-Chemical Characteristics	
Table 1.1	Coastal Municipalities in Camarines Sur	2
Table 1.2	Land Management Unit Symbol and Descriptions	3 5
Table 1.3	Land Use/Vegetation in Camarines Sur Sampling Sites.	5
Table 2.1	Salinity Classification	6
Table 2.2	Distribution of Coastal Land Area at Different Degree of Salinity,	7
	Camarines Sur	
Table 2.3	Average Rice Yield by Degree of Salinity, Province of Camarines Sur,	8
	CY 2015-2016	
Table 2.4	Coastal Land Area (in hectares) per Municipality at Different Degree of	8
	Salinity -Camarines Sur (0-30 cm depth)	
Table 2.5	Coastal Land Area (in hectares) per Municipality at Different Degree of	8
	Salinity -Camarines Sur (30-60 cm depth)	
Table 2.6	Coastal Land Area (in hectares) per Municipality at Different Degree of	9
	Salinity -Camarines Sur (60-90 cm depth)	
Table 2.7	Legend to the Rice Suitability Map	9
Figure 1.1	Average Monthly Rainfall, Province of Camarines Sur	4
	Salinity Map- Province of Camarines Sur (0-30cm depth)	10
	Salinity Map- Province of Camarines Sur (30-60cm depth)	11
	Salinity Map- Province of Camarines Sur (60-90cm depth)	12
	Rice Suitability Map- Province of Camarines Sur	13
	, , , , , , , , , , , , , , , , , , ,	
	References	+
	Working Group	+
	Photos	+
	1 1 10000	

RATIONALE

Salinity is long time known as one of the problem soils. It directly affects the agriculture and fishery sector in terms of productivity and income. Seriously salt-affected soils result to a total crop failure. The reasons for salinity are 1) increasing trend in sea level rise, 2) over pumping of the aquifers, and 3) seepage along the river — that is, when seawater moves upstream into the river during periods of high tide and low river flow.

The Bureau of Soils and Water Management (BSWM) have initiated several studies regarding soil salinity, but a nationwide information system has never been developed for areas affected by salinity. A baseline information on salinity will be a significant input in infrastructure planning in agriculture and fishery, risk management — particularly disaster risk management and climate change adaptation, — and policy recommendations.

Based on BSWM Reconnaissance Survey in 1988, forty five (45) provinces are identified affected by salinity. They represent more than half of the country's provinces. However, the extent of this condition to Philippine soils is not yet established and thus the subject of this project.

This project generally aims to develop a national information system for the coastal areas affected by salinity. Specifically, it aims to:

- 1. describe the soil physico-chemical characteristics;
- 2. generate salinity maps;
- 3. develop spatial database on salinity for the coastal areas;
- 4. undertake suitability evaluation for agriculture and fisheries and prepare scenarios as input to policy.

CAMARINES SUR

I. Soil Physical Characteristics

A. General Description of the Site

Camarines Sur is geographically located in the central part of the Bicol Peninsula which forms the southwestern part of the island of Luzon. It is about 450 kilometers from Manila and is located between $13^0\ 15'$ and $14^0\ 10'$ North Latitude and between $122^0\ 40'$ and $124^0\ 10'$ East Longitude. It is bounded on the north by the province of Quezon and Camarines Norte, San Miguel Bay and Pacific Ocean. On the south by the province of Albay, Lagonoy Gulf on the east and on the west by Ragay Gulf. The province has a total land area of 526,682 hectares of which 295,111 hectares or 56.03% are devoted to agriculture.

There are seventeen (17) coastal municipalities and eighty one (81) barangays susceptible to salinity, hence the sites for soil sampling are as follows:

Table 1.1 Coastal Municipalities in Camarines Sur

No.	Municipality	No. of Brgys.	No. of Sampling Sites	No. of Soil Samples Collected
1	Cabusao	4	4	27
2	Libmanan	10	10	30
3	Pamplona	5	5	15
4	Milaor	5	5	15
5	Minalabac	1	1	3
6	Gainza	2	2	6
7	San Fernando	5	5	15
8	Calabanga	8	8	24
9	Bombon	1	1	3
10	Magarao	7	7	21
11	Canaman	4	4	12
12	Camaligan	2	2	6
13	Tinambac	5	5	15
14	Lagonoy	4	4	15
15	San Jose	7	7	19
16	Tigaon	7	7	19
17	Sagñay	4	4	12
	TOTAL	81	81	243

B. Land Management Unit (LMU)

Land Management Unit is a recurring pattern of land which possesses similar physical characteristics such as soil type associated with relatively uniform land use or vegetation cover and parent material. It is the building block of the pedo -ecological zone, which represents a broader landscape grouping such as lowland, upland, hillyland and highland.

Table 1.2 Land Management Unit Symbols and Descriptions

Symbol	Land Management Unit					
01	Active tidal flat (developed fishpond/ salt beds), level to gently sloping, moderately flooded					
02	Active tidal flat (Natural mangrove / nipa), level to gently sloping, severely flooded					
08	Beach ridges & swales, level to gently sloping					
09	Broad alluvial plain, level to gently sloping					
O9J	Broad alluvial plain, level to gently sloping, with slight seasonal flooding					
10	Former / old tidal flats, level to gently sloping					
10J	Former / old tidal flats, level to gently sloping, with slight seasonal flooding					
12	Lower river terrace, level to gently sloping, with slight seasonal flooding					
16	Infilled / localized valley, level to gently sloping					
29	Lower footslope, level to gently sloping					

C. Elevation

In this study, the landscape is under the warm-lowland pedo-ecological zone. These are low-lying areas characterized by low elevation (< 100 meters above sea level), with level to undulating topography (0-8% slope) and average temperature of >25°C.

D. Agro-Climate

According to the Modified Corona's Classification of Climate, Camarines Sur is in Type II. It is characterized by having a very pronounced maximum rain period from July to December and no dry season. The minimum monthly rainfall occurs during the months of February to May, as shown in Figure 1.1 Average Monthly Rainfall from PAGASA weather station in Pili.

Soil sampling was done in April until May of 2017 when rainfall is minimum.

Average monthly rainfall (CY 2006 - 2016) 400 350 300 250 200 150 100 50 0 Jan Feb Mar May Jun Jul Oct Nov. Dec Apr Aug Sept Month

Figure 1.1 Average Monthly Rainfall, Province of Camarines Sur

Source: PAGASA- Central Bicol State University, Pili, Camarines Sur

E. Land Use

Land use involves the management and modification of natural environment. It also has been defined as "the total of arrangements, activities, and inputs that people undertake in a certain land cover type". Land use and vegetation plays an important role in the identification of areas affected by salinity. It provides indicative information primarily on the physical and socioeconomic activities prevailing in the area. On the other hand, salinity reduces the kinds of crops that can be grown for economic purposes due to chemical reactions between salt water and soil clay particles.

The common land use/ vegetation in Camarines Sur sampling sites are presented in Table 1.3. Some indicators of salinity per municipality are also indicated in this table.

Table 1.3 Land Use/ Vegetation in Camarines Sur Sampling Sites.

Land Use/ Vegetation	Some indicators of salinity
Paddy Rice, Melon	low yield, white crust, Nipa
Paddy Rice, Melon, Bitter Gourd, Watermelon, Mungbean	rice leaf color turns red, stunted growth, sudden death of crop, Nipa
Irrigated Paddy Rice	sudden death of crop
Paddy Rice	wilting of rice, water hyacinth
Irrigated Paddy Rice	
Irrigated Paddy Rice	
Irrigated Paddy Rice	Nipa
Paddy Rice, Corn, Nipa, Coconut	Nipa
Irrigated Paddy Rice	
Paddy Rice, Watermelon	Nipa
Irrigated Paddy Rice	sudden death of crop, stunted growth of rice
Irrigated Paddy Rice	
Paddy Rice, Coconut	Nipa
Irrigated Paddy Rice, Corn	
Irrigated Paddy Rice	
Irrigated Paddy Rice, Squash	
Paddy Rice, Corn	
	Paddy Rice, Melon Paddy Rice, Melon, Bitter Gourd, Watermelon, Mungbean Irrigated Paddy Rice Paddy Rice Irrigated Paddy Rice Irrigated Paddy Rice Irrigated Paddy Rice Irrigated Paddy Rice Paddy Rice, Corn, Nipa, Coconut Irrigated Paddy Rice Paddy Rice, Watermelon Irrigated Paddy Rice Irrigated Paddy Rice, Corn Irrigated Paddy Rice Irrigated Paddy Rice Irrigated Paddy Rice

II. Soil Chemical Characteristics

To test the salinity of the soil, samples are taken for laboratory analysis and the following are determined:

- 1. **Electrical Conductivity (EC)** is a measurement of the dissolved material in an aqueous solution, which relates to the ability of the material to conduct electrical current through it. It is measured in Seimens per unit area (e.g. mS/cm)
- 2. **pH** is a measure of the acidity of the soil on its hydrogen ion concentration. The pH ranges on a logarithmic scale from 1-14, where pH 1-6 are acidic, pH 7 is neutral, and pH 8-14 are basic. Lower pH corresponds with higher [H⁺], while higher pH is associated with lower [H⁺].
- 3. **Sodium Adsorption Ratio (SAR)** is a measure of the amount of sodium (Na) relative to calcium (Ca) and magnesium (Mg) in the water extract from saturated soil paste.

$$SAR = \frac{[Na^+]}{\sqrt{([Ca^{2+}]+[Mg^{2+}])}}$$

Soil water salinity can affect soil physical properties by causing fine particles to bind together into aggregates. This process is known as flocculation and is beneficial in terms of soil aeration, root penetration, and root growth. Although increasing soil solution salinity has a positive effect on soil aggregation and stabilization, at high levels salinity can have negative and potentially lethal effects on plants. As a result, salinity cannot be increased to maintain soil structure without considering potential impacts on plant health.

Sodium has the opposite effect of salinity on soils. The primary physical processes associated with high sodium concentrations are soil dispersion and clay platelet and aggregate swelling. The forces that bind clay particles together are disrupted when too many large sodium ions come between them. When this separation occurs, the clay particles expand, causing swelling and soil dispersion.

Soil dispersion causes clay particles to plug soil pores, resulting in reduced soil permeability. When soil is repeatedly wetted and dried and clay dispersion occurs, it then reforms and solidifies into almost cement-like soil with little or no structure. The three main problems caused by sodium-induced dispersion are reduced infiltration, reduced hydraulic conductivity, and surface crusting.

Salts that contribute to salinity, such as calcium and magnesium, do not have this effect because they are smaller and tend to cluster closer to clay particles. Calcium and magnesium will generally keep soil flocculated because they compete for the same spaces as sodium to bind to clay particles. Increased amounts of calcium and magnesium can reduce the amount of sodium-induced dispersion.

A. Salinity Classification

Table 2.1 Salinity Classification (Crop-based, Rice) (BSWM/FAO Salinity Project, 1999)

Electrical Conductivity		
(mS/cm)	Soil Salinity Class	Effect on Plants
0 - 2	Non Saline	Very little chance of injury on all plants.
2.1 - 4	Slightly Saline	Sensitive plants and seedlings may show
		injury
4.1 - 8	Moderately Saline	Most non-salt tolerant plants will show
		injury; salt-sensitive plants will show
		severe injury.
> 8	Severely Saline	Very few plants will tolerate and grow

The laboratory results for salinity testing of this project are classified using Table 2.1, based from the BSWM/FAO Salinity Project in 1999. This salinity classification is rice-based and applicable to Philippine setting.

Salinity maps (@pages 10-12) are produced at three different depths: 0-30, 30-60 and 60-90cm. Table 2.2 summarizes the coastal land area of Camarines Sur per degree of salinity. Based from this table, saline areas are generally higher at 0-30cm depth at 6.5% and 1.7% of the total area. This can be due to the surface accumulation of salts during dry months (April-May, when soil sampling was done).

Table 2.2 Distribution of Coastal Land Area at Different Degree of Salinity, Camarines Sur

			Soil De	pth						
Salinity Class	0-30cı	n	30-6	0	60-90	0				
	hectares	%	hectares	%	hectares	%				
Non saline	11,927.4	83.5	12,108.1	84.8	12,401.8	86.9				
Slightly Saline	1,169.9	8.2	1,029.9	7.2	992.6	7.0				
Moderately saline	934.5	6.5	1,020.7	7.2	806.2	5.6				
Severely Saline	246.0	1.7	119.1	0.8	77.1	0.5				
TOTAL	14,277.8	100	14,277.8	100	14,277.8	100				

B. Suitability Assessment

The Rice Suitability Map is an overlay of the Salinity map (0-30cm depth) and the 2016 Rice Suitability Map for the coastal rice area.

The Rice Suitability Map of Camarines Sur (@page 13), shows that the Highly Suitable (S1) area for rice is 0.54% of the total coastal area, Moderately Suitable (S2) with varying limitations is 98.17 % of the total coastal area, Marginally Suitable (S3) is 1.25% and Not Suitable (Nn) is 0.04% of the total coastal area. S3 and Nn can be promoted to S2 if the limiting factors (listed in the suitability map) will be corrected.

C. Rice Yield by Degree of Salinity

Salinity problem affects water uptake of crops, slows down rate of growth and results to yield losses. Table 2.4 shows the percent decrease in average yield of farmers per degree of salinity. Based from the key informant interview and the results of the laboratory soil analysis, Table 2.3 shows that there is 29% decrease in yield on slightly saline irrigated paddy rice area, and 56% decrease in yield for moderately saline area. While for non-irrigated paddy rice, there is a 28%

decrease in yield for moderately saline, and 3.3% decrease for severely saline areas. This generally shows that as the degree of salinity increases, the decrease in yield also increases.

Table 2.3 Average Rice Yield by Degree of Salinity, Camarines Sur, CY 2015-2016

	Average Yield	% Decrease	Average Yield	% Decrease
Degree of Salinity	Irrigated Paddy	in Yield	Non- Irrigated	in Yield
	Rice (kg/ha)		Paddy Rice (kg/ha)	
Non-saline	4,259.00		2,740.63	
Slightly saline	3,034.25	29		
Moderately saline	1,892.75	56	1,980	28
Severely saline			2,650	3.3

Table 2.4 Coastal Land Area (in hectares) per Municipality at Different Degree of Salinity

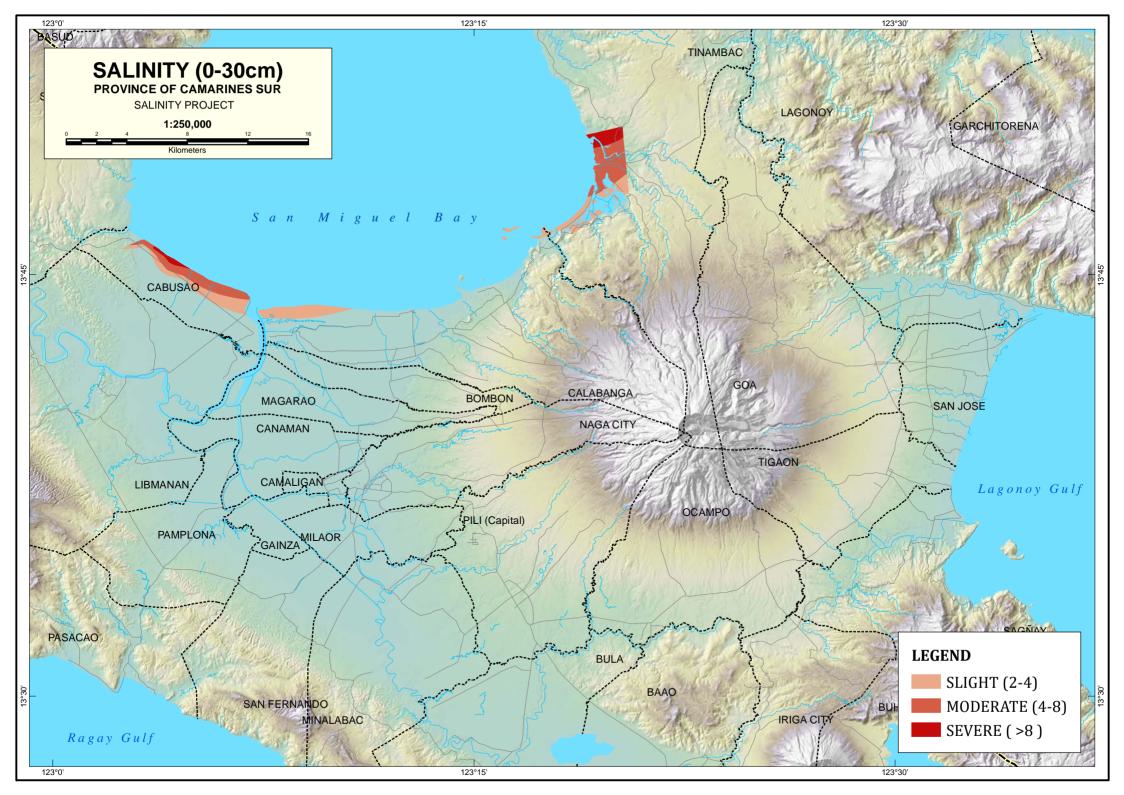
(Table for Salinity Map of Camarines Sur @ 0-30cm depth, page 10)

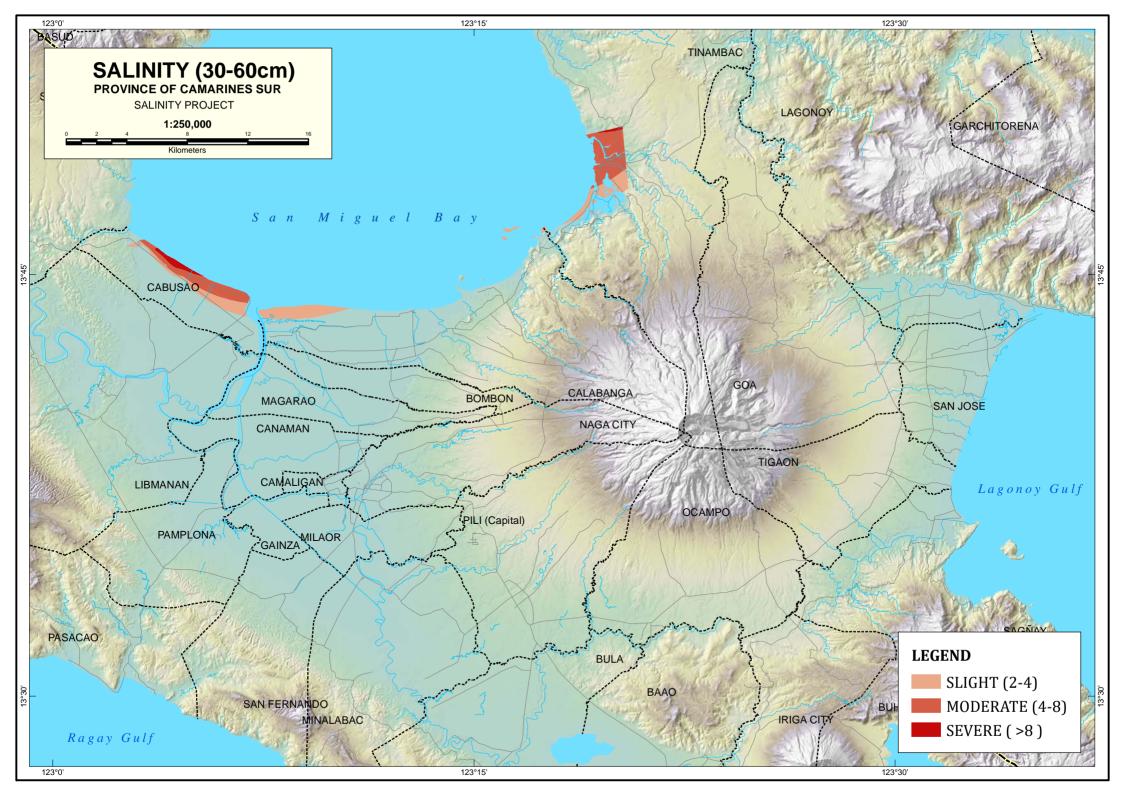
	Municipality	Non-Saline	Slightly Saline	Moderately Saline	Severely Saline
1	CABUSAO	2,237	396	428	63
2	CALABANGA	8,602	424	1	
3	TINAMBAC	1,088	350	506	183
	TOTAL	11,927	1,170	935	246

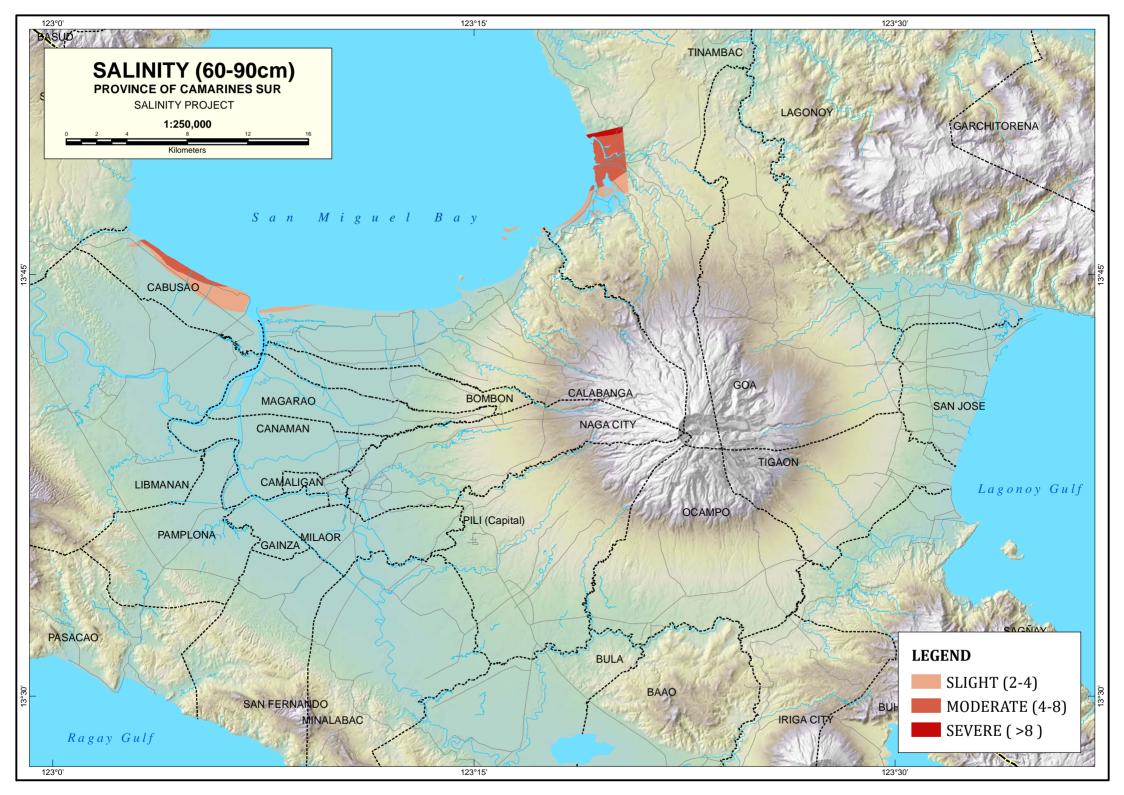
Table 2.5 Coastal Land Area (in hectares) per Municipality at Different Degree of Salinity

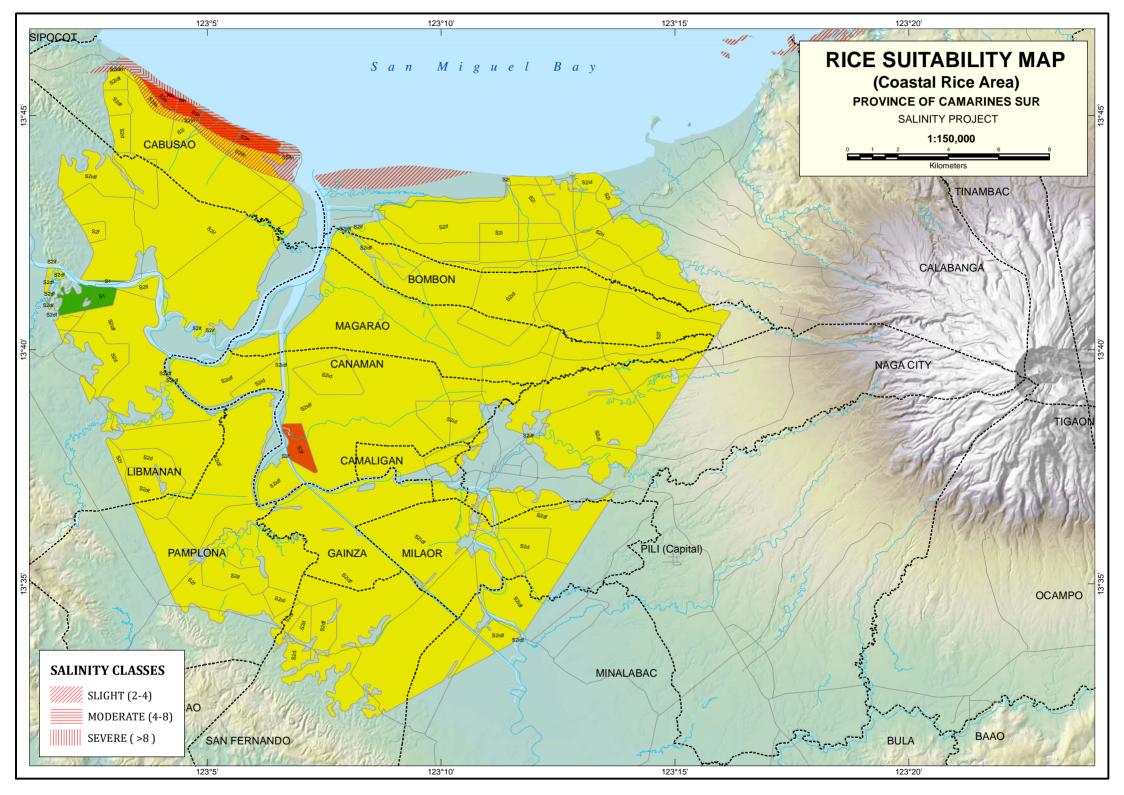
(Table for Salinity Map of Camarines Sur @ 30-60cm depth, page 11)

	Municipality	Non Saline	Slightly Saline	Moderately Saline	Severely Saline
1	CABUSAO	2,265.25	331.11	432.82	94.54
2	CALABANGA	8,619.65	406.95		
3	TINAMBAC	1,223.20	291.84	587.87	24.52
	Total	12,108.10	1,029.91	1,020.69	119.06


Table 2.6 Coastal Land Area (in hectares) per Municipality at Different Degree of Salinity


(Table for Salinity Map of Camarines Sur @ 60-90cm depth, page 12)


	Municipality	Non Saline	Slightly Saline	Moderately Saline	Severely Saline
1	CABUSAO	2,292.05	591.96	239.72	
2	CALABANGA	8,923.61	103.00		
3	TINAMBAC	1,186.14	297.65	566.49	77.13
	Total	12,401.80	992.60	806.21	77.13


Table 2.7 Legend for the Rice Suitability Map (@page 13) Coastal Rice Area - Province of Camarines Sur

LEGEND								
SUITABILITY	DESCRIPTION	LIMIT	ING FACTOR	S	AR	EA		
RATING	DESCRIPTION	Moderate	Marginal	Severe	ha	%		
S1	Highly Suitable				188	0.54		
S2f		f			2833	8.08		
S2d		d			695	1.98		
S2df		d,f			3195	9.11		
S2i		i			493	1.41		
S2in	Moderately Suitable	i,n			32	0.09		
S2if		i,f			6852	19.54		
S2ifn		i,f,n			269	0.77		
S2id		i,d			1734	4.95		
S2idf		i,d,f			18308	52.22		
S2idfn		i,d,f,n			7	0.02		
S3n		i	n		81	0.23		
S3n	Marginally Suitable	i,f	n		215	0.61		
S3f		i,d	f		144	0.41		
Nn	Nat Cuitalala	i		n	4	0.01		
Nn	Not Suitable	i,f		n	9	0.03		
	TOTAL 35,059 100							

REFERENCES

- 1. The Soil Survey Manual Technical Publication No. 2, ISSN 1908-9600, BSWM December 2008.
- 2. BSWM/FAO Salinity Project, 1999.
- 3. Rad, H.E., et al. The Effects of Salinity at Different Growth Stages on Rice Yield.
- 4. https://serc.carleton.edu/microbelife/research_methods/environ_sampling/pH_EC.html
 Water and Soil Characterization pH and Electrical Conductivity
- 5. https://search.informit.com.au/documentSummary;dn=280216550175956;res=IELHSS
 Use of Saline Water for Weed Control in Seashore Paspalum ('Paspalum vginatum')
- 6. http://waterquality.montana.edu/energy/cbm/background/soil-prop.html#SalProp
 Effects of Salinity on Plant Growth
- 7. http://www.fao.org/docrep/x5871e/x5871e04.htm Saline Soils and their Management.
- 8. http://www.greenpeace.org/seasia/ 2007
- 9. www.cagayano.tripod.com

National Mapping, Characterization, and Development of Spatial Database for the Coastal Areas Affected by Salinity (2017)

Technical Advisory Group:

Chairperson OIC-Dir. Angel C. Enriquez Vice-Chairperson Asst. Dir. Edna D. Samar

Members Dr. Gina P. Nilo

Mr. Pablo A. Montalla Engr. Teresita S. Sandoval Engr. Samuel M. Contreras Mr. Dominciano D. Ramos Jr. Dr. Gavino Isagani P. Urriza Ms. Mercedes S. Fernando Mr. Henry A. Apolinares

Study Management: Elmer B. Borre

Bertolio P. Arellano Feriola M. Serrano Jovette L. Tenorio Angelica L. Ecito

Implementation Group

CAGAYAN Group Leader Jordan G. Calura

Members Regine Marie N. Brion

Visitacion V. Castillo

CAMARINES SUR Group Leader Leandro T. Evangelista

Members Ditse Marie L. Tesorero

Mark Robert T. Catolos

AGUSAN DEL NORTE Group Leader Joovanni A. Deliman

Members Valerio R. Ablaza, Jr.

May F. Taladucon

Laboratory Analysis Group: Angelita C. Marcia

Perla P. Estabilo Elvira B. Bayalas Bernardina I. Daguio Joseph P. Dayap Vicky T. Dimaano Luis Angelo A. Cortez

Frances A. Villa Juan Josefina L. Creencia

GIS Support Group: Andrew B. Flores

Racquel R. Granil Andres B. Calimutan Katherine M. de Luna Earnest Lyle A. Jadsac

Soil and Water Area Coordinators:

Region II Ariel L. Arenas
Region V Rogelio P. Creencia
Region XIII Marcelo Dayo

Administrative Support Group:

Mr. Rodrigo I. Ablaza Mr. Ralph Julius H. Adille

Ms. Lilia T. Rafael

Mr. Jose Antonio Guatlo Ms. Denise A. Solano Ms. Narcisa D. Ramis

Ms. Cathlyn Joy P. dela Torre Ms. Ma. Cecilia C. Moreno

Ms. Mena A. Creus Ms. Nancy C. De Sagun Ms. Elizabeth M. Hernando Ms. Rafhonzel P.Bongat Ms. Analyn B. Cortez Ms. Josephina V. Estrada

Courtesy call to Local Government Units of Camarines Sur

Briefing/Orientation

Auger Boring and Soil Sampling

Test pit and Soil Sampling

Air Drying of Soil Samples

On-site Electrical Conductivity (EC) Testing

Key Informant Interviews

Implementation Group

